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Abstract: In this work, we describe the first Leishmania-infecting leishbunyavirus—the first virus 
other than Leishmania RNA virus (LRV) found in trypanosomatid parasites. Its host is Leishmania 
martiniquensis, a human pathogen causing infections with a wide range of manifestations from 
asymptomatic to severe visceral disease. This virus (LmarLBV1) possesses many characteristic 
features of leishbunyaviruses, such as tripartite organization of its RNA genome, with ORFs 
encoding RNA-dependent RNA polymerase, surface glycoprotein, and nucleoprotein on L, M, and 
S segments, respectively. Our phylogenetic analyses suggest that LmarLBV1 originated from 
leishbunyaviruses of monoxenous trypanosomatids and, probably, is a result of genomic re-
assortment. The LmarLBV1 facilitates parasites’ infectivity in vitro in primary murine macrophages 
model. The discovery of a virus in L. martiniquensis poses the question of whether it influences 
pathogenicity of this parasite in vivo, similarly to the LRV in other Leishmania species. 

Keywords: Bunyavirales; Leishmania martiniquensis; leishbunyavirus 
 

1. Introduction 

Bunyavirales is an order of negative-sense single-stranded RNA (-ssRNA) viruses [1]. They 
typically have three genomic segments (large, L; medium, M; small, S) encoding a viral RNA-
dependent RNA polymerase L (RDRP L), a surface glycoprotein precursor, and a nucleoprotein, 
respectively [2]. Additional ORFs, usually involved in counteracting the host antiviral response, may 
be present in S or M segments [3,4]. Each viral segment has terminal complementary sequences 
governing its interaction with the polymerase. Furthermore, multiple molecules of a nucleoprotein 
wrap around genomic RNA following helical symmetry [4]. Together, an RNA molecule, a 
polymerase, and the nucleoproteins form a functional viral ribonucleoprotein (vRNP) capable of 
transcription and replication [5]. Virions are usually 90–100 nm in diameter and consist of vRNPs of 
each genomic segment enclosed by a lipid membrane with incorporated viral glycoproteins [3]. Many 
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bunyaviruses (a generic term for Bunyavirales) are causative agents of arthropod-borne diseases of 
vertebrates and plants [6]. 

Recent metatranscriptomic studies revealed a plethora of deep branching bunyaviruses from 
vertebrates and invertebrates, suggesting a long-term coevolution of these viruses with their hosts 
and vectors [7–9]. Of note, some bunyaviruses are capable of infecting distantly related eukaryotic 
cells. For example, Orthotospovirus (the tomato spotted wilt virus (Bunyavirales, Tospoviridae)) can 
replicate in both plant and insect cells [10,11]. 

The kinetoplastid flagellates of the family Trypanosomatidae are a eukaryotic group, whose 
viruses recently started attracting attention [12]. Trypanosomatids are obligate parasites of 
invertebrates, vertebrates, and plants [13]. They either have one or two hosts in their life cycle 
(monoxenous and dixenous species, respectively) [14–16]. Dixenous trypanosomatids originate from 
their monoxenous relatives and many of them are of medical or economic importance[17–19]. 

Members of the genus Leishmania infect vertebrates; they are transmitted by phlebotomine sand 
flies or, possibly, biting midges and cause a variety of diseases collectively named leishmaniases [20]. 
These diseases manifest with a wide spectrum of clinical symptoms from relatively harmless skin 
lesions to fatal cases involving failure of visceral organs. Currently, the genus Leishmania is 
subdivided into four subgenera: Leishmania (Leishmania), L. (Mundinia), L. (Sauroleishmania), and L. 
(Viannia) [21,22]. These groups are phylogenetically distinct and differ in host specificity or clinical 
symptoms. The recently established subgenus Mundinia is the most understudied one [23,24]. 

Thus far, only the representatives of the subgenera Viannia and Leishmania were extensively 
screened for viral presence, resulting in the discovery of Leishmania RNA viruses (LRVs). The first 
virus of this group was documented in L. (V.) guyanensis more than 30 years ago [25]. This double-
stranded RNA (dsRNA) virus is classified as Leishmaniavirus within the family Totiviridae based on 
sequence similarity to the yeast L-A totivirus [26]. The genus Leishmaniavirus is subdivided into LRV1, 
infecting New World Leishmania (Viannia) [27,28], and LRV2 described from Old World Leishmania 
(Leishmania) [29–31]. Recently, new representatives of this viral genus were unexpectedly found in 
unrelated trypanosomatids, members of the monoxenous genus Blechomonas parasitizing fleas [32]. 

An increased interest in leishmaniaviruses was stimulated by the discovery that LRV1 presence 
may augment pathogenicity of some New World Leishmania species. It was shown that viral dsRNA 
interacts with Toll-like receptor 3 (TLR3) in the parasitophorous vacuole of a macrophage, initiating 
production of pro-inflammatory cytokines, including interferon-β [33] and subverts innate immunity 
via TLR3-mediated NLRP3 (NACHT, LRR and PYD domains-containing protein 3) inhibition of 
inflammasomes. This, in turn, leads to chronic inflammation that counteracts anti-leishmanial 
immune response and contributes to the metastatic potential of Leishmania [34,35]. It is argued that in 
this way the virus confers a selective advantage to Leishmania, resulting in its retention [36,37]. Only 
two strains of L. (Mundinia) enriettii were tested for LRV presence by PCR and both documented as 
negative [23]. 

No viruses other than LRVs were found in Leishmania spp [12]. At the same time, recent studies 
reveal numerous bunyaviruses infecting other trypanosomatids, including monoxenous relatives of 
Leishmania [38,39]. They all have a typical tripartite genome arrangement, although their M segment 
is markedly reduced in size and amino acid sequences of the M-encoded putative glycoprotein are 
extremely divergent. Sequences of their RDRPs and terminal complementary repeats are closest to 
those of Phenuiviridae. Leishbunyaviruses (LBVs, proposed family Leishbunyaviridae) form a single 
and well separated clade on a Bunyavirales tree, suggesting that they acquired the ability to infect 
trypanosomatids only once. Comparison of LBV and trypanosomatid phylogenies revealed cases of 
both co-evolution and horizontal viral transmissions [32,38]. 

In this work, we describe the first Leishmania-infecting leishbunyavirus as the first non-LRV virus 
in trypanosomatids of this genus. 

2. Materials and Methods 

2.1. Parasite Culture, DNA Isolation, and Verification of Species Identity 
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The following Leishmania (Mundinia) strains were used in this study: L. (M.) enriettii 
MCAV/BR/45/LV90, L. (M.) macropodum MMAC/AU/2004/AM-2004, L. (M.) orientalis 
MHOM/TH/2007/PCM2, and L. (M.) martiniquensis MHOM/MQ/92/MAR1. Promastigotes were 
cultured in modified M199 media supplemented with 1 mg/mL biotin, 0.5 mg/mL biopterin (both 
from Sigma-Aldrich, St. Louis, MO, USA), 2.5 µg/mL of hemin (Jena Bioscience GmbH, Jena, 
Germany), 1× MEM vitamin solution, 10% heat-inactivated fetal bovine serum, 500 units/mL of 
penicillin, and 0.5 µg/mL of streptomycin (all from Thermo Fisher Scientific, Waltham, MA, USA). 

Total genomic DNA was isolated from 10 mL of log-phase trypanosomatid cultures with the 
DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. 
Small subunit rRNA gene was amplified using primers S762 and S763 [40], following the previously 
described protocol [41]. The obtained PCR fragments were sequenced directly at Macrogen Europe 
(Amsterdam, The Netherlands) using the primers 883F, 907R, S757, and A757 [42]. The identity of the 
strains was confirmed by BLAST analysis [43]. 

2.2. DsRNA Isolation and Next-Generation Sequencing 

Total RNA was extracted from 108 cells using TRIzol (Thermo Fisher Scientific), following the 
manufacturer’s guidelines. The dsRNA fraction was isolated from 200 µg of total RNA using the 
previously described DNase-S1 nuclease method [38] and visualized in 0.8% agarose gels. The 
abundance of fragments was analyzed using GeneTools v. 4.3.9 (Syngene, Cambridge, UK). 
RiboMinus libraries, prepared from the dsRNA sample, were sequenced on the Illumina HiSeq 2500 
platform (Illumina, San Diego, CA, USA) at Macrogen Inc. (Seoul, South Korea). 

2.3. Viral Sequence Assembly 

Transcriptome assembly was carried out essentially as described earlier [32]. In brief, reads were 
trimmed with Trimmomatic v. 0.36 [44] and assembled de novo using Trinity v. 2.4.0 [45]. Minimal 
k-mer was set to 5, and other parameters were not changed. Read mapping was performed in Bowtie2 
v. 2.3.4.1 [46] and SAMtools v. 1.8 [47], and the coverage was calculated using BEDTools v. 2.25 
software [48]. Viral segments were identified by BLAST searches of the 100 most abundant 
transcripts. Borders of viral segments were determined based on coverage value (with 10 reads per 
base as the threshold) and presence of specific terminal sequences. To obtain the terminal 
complementary sequences, original reads were trimmed with BBduk and mapped with BBmap 
(https://jgi.doe.gov/data-and-tools/bbtools/) to viral contigs assembled previously. GenBank 
accession numbers for the L, M, and S segment sequences are MK356554, MK356555, and MK356556, 
respectively. 

2.4. Prediction of Functional Elements 

The search for ORFs in the viral contigs was performed using NCBI ORFfinder [49] with the 
minimal ORF length set to 150 nt. The identification of the RDRP domain was done using the NCBI 
Conserved Domain Search [50]. Predictions of the transmembrane domains and membrane-targeting 
signal peptides were made using the TMHMM v. 2.0 (www.cbs.dtu.dk/services/TMHMM/), TMPred 
[51], Phobius [52], MEMSTAT3 on PSIPRED server [53], and SignalP v. 4.1 [54] software packages. N-
glycosylation sites were identified with NetNGlyc 1.0 Server (www.cbs.dtu.dk/services/NetNGlyc/). 

2.5. Phylogenetic Analyses 

Full-length amino acid sequences of Leishbunyaviridae and Phenuiviridae RDRPs were aligned 
using MAFFT v. 7.313 E-INS-i algorithm [55]. The alignment was trimmed in TrimAl v. 1.4 with 
“automated1” algorithm [56], producing a matrix with 1772 amino acid positions that was used for 
phylogenetic reconstructions. Maximum likelihood analysis was performed in IQ-TREE v. 1.6.1 [57]. 
The best amino acid substitution model, LG with rate heterogeneity across sites approximated using 
proportion of invariant sites and 4 categories of discrete Γ distribution (+ I + G4), as well as the 
empirical amino acid frequencies (+ F), was selected by both corrected Akaike information criterion 
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and Bayesian information criterion in the built-in ModelFinder [58]. Statistical supports for the 
branches were generated by running 1000 thorough bootstrap replicates. Bayesian inference was 
accomplished in MrBayes v. 3.2.6 [59] with the same substitution model and estimated during the 
run using “mixed” prior (resulting in 1.0 posterior probability of LG) and other model parameters 
specified above. The analysis was run for 1,000,000 Monte-Carlo Markov chain generations with 
default settings. For the comparison of nucleoproteins and glycoproteins, the respective alignments 
were prepared and trimmed in the same way as described above resulting in 163 and 190 aa data 
matrices. Maximum likelihood analysis for the nucleoproteins was performed similarly to the RDRPs. 
For the glycoproteins, pairwise p-distances were estimated in MEGA X [60]. 

2.6. Negative-Stain Transmission Electron Microscopy 

In brief, gradient-purified virus samples were applied to a carbon-coated copper grid, stained 
with molybdenum acetate, and examined under a Philips 201C transmission electron microscope as 
described previously [38]. 

2.7. Treatment with Ribavirin 

Virus-positive L. (M.) martiniquensis culture was treated with 2 mM of ribavirin (Sigma-Aldrich) 
for 4 weeks. The cultures were passaged weekly and the viral loads were measured by RT-qPCR in 
the LightCycler480 (Roche Life Science, Penzberg, Germany) as described previously [61,62] using 
the SYBR Green Master mix (Roche Life Science) and the following primer pairs: LBV_RDRP_for 5’-
ggatcagcaaacaggagtcag-3’, LBV_RDRP_rev 5’-acatccaaaggctggcataca-3’; and 18S_for 5’–
ttatggagctgtgcgacaag-3’, 18S_rev 5’-agtacgttctcccccgaact-3’. The cDNA was synthesized with random 
hexamer primers using the Super Script III-First strand synthesis kit (Thermo Fisher Scientific) 
following the manufacturer’s instructions. Then, 18S rRNA expression was used for normalization. 
The anti-viral treatment was stopped after 4 weeks, but the viral load was followed for 2 more weeks 
to ensure stable depletion. 

2.8. Macrophage Infection 

Mouse bone-marrow derived macrophages were infected as described previously [63] with 
modifications [64]. In brief, differentiated macrophages were cultured in complete RPMI-1640 
medium supplemented with 10% fetal bovine serum (FBS), 50 units/mL of penicillin, 50 µg/mL of 
streptomycin, 2 mM of L-glutamine, and 0.05 mM of 2-mercapto-ethanol (all from Sigma-Aldrich) at 
37 °C with 5% CO2. These cells were plated into CellStar 24-wells (Greiner Bio-One GmbH, 
Kremsmünster, Austria) at 4 × 105 cells/mL. The stationary-phase Leishmania cells were added at a 
parasite to macrophage ratio of 6 promastigotes to 1 macrophage. After 2 h, cells were left either in 
complete RPMI-1640 or in the media combined with 50 U/mL IFN-γ (Bio-Rad) and 0.5 µg/mL LPS 
(Sigma-Aldrich) (classically stimulated macrophages) or with 25 ng/mL IL-4 (eBioscience/Thermo 
Fisher Scientific) (alternatively stimulated macrophages). Then, 72 h post infection, macrophages 
were lysed and amastigotes were counted by a hemocytometer after resuspension in the complete 
RPMI medium. All experiments were performed in two independent biological replicates and 
samples were analyzed in triplicate. Statistical analysis was done with a generalized linear model of 
the negative binominal distribution. 

Ethics statement: Animals were maintained and handled in the animal facility of Charles 
University in Prague in accordance with institutional guidelines and Czech legislation (Act No. 
246/1992 and 359/2012 coll. on protection of animals against cruelty in present statutes at large), which 
complies with all relevant European Union guidelines. All the experiments were approved by the 
Committee on the Ethics of Laboratory Experiments of the Charles University and were performed 
under permission No. MSMT-31114/2015-13 of the Czech Ministry of the Environment. All efforts 
were made to minimize the number and suffering of experimental animals during the study. 
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3. Results 

3.1. Viral dsRNA in Leishmania (M.) martiniquensis 

Four isolates of four different species of the leishmanial subgenus Mundinia were screened for 
the presence of dsRNA viruses. In one of these isolates, L. (M.) martiniquensis MHOM/MQ/92/MAR1, 
we documented the presence of three major dsRNA bands designated as L, M, and S for large, 
medium, and short, respectively (Figure 1A). This sample was sequenced using the Illumina HiSeq 
platform, yielding 5.4 Gbp of sequence data. The three viral contigs (6.1, 1.2, and 0.7 kb long) were 
highly abundant (60.1 to 354.2 fold above the average RPKM (Reads Per Kilobase per Million mapped 
reads) value), which facilitated their quick and reliable identification. Each contained a single ORF; 
2012, 334, and 165 aa long in the L, M, and S fragments, respectively. As previously reported for other 
leishbunyaviruses [32], the proportions of particular viral segments were not even. As compared to 
the L RNA, the S segment was about six-fold more abundant (Table 1 and Table S1). This is in 
agreement with the higher demand for the S RNA-encoded nucleoprotein in vRNP formation. The 
sequences of all three viral segments were complete and included both 5' and 3' terminal "panhandle" 
inverted repeats (5'-acacaaaga tctttgtgt-3’, Figure 2) necessary for replication, transcription, and 
translation in bunyaviruses [3]. The sequences of the identified terminal repeats were identical to 
those of other known LBVs [32,38]. 

 
Figure 1. (A) Screening of double-stranded RNAs (dsRNAs) in Leishmania (Mundinia) spp. M, 
GeneRuler 1-kb DNA ladder. Indicated sizes are in kilobases: 1, L. (M.) martiniquensis 
MHOM/MQ/92/MAR1; 2, L. (M.) enriettii MCAV/BR/45/LV90; 3, L. (M.) macropodum 
MMAC/AU/2004/AM-2004; 4, L. (M.) orientalis MHOM/TH/2007/PCM2. (B) Negative-stain 
transmission electron micrographs of the virus particle isolated from L. (M.) martiniquensis. Scale bar 
is 100 nm. 

Table 1. Molecular data for the identified RNA sequences1. 

Viral Sequences Accession  Length, bp ORF, AA RPKM 
LmarLBV1 S MK356556 721 165 6,600.13 
LmarLBV1 M MK356555 1,244 334 1,368.42 
LmarLBV1 L MK356554 6102 2,012 1,131.22 

1 See also Table S1. ORF: Open Reading Frame, AA: Amino Acids, RPKM: Reads per kilobase per million 
mapped reads.  

BLASTp searches demonstrate that the ORF sequences within the L and S segments are very 
similar to the RDRPs (up to 43% identity with 96% coverage) and nucleocapsid proteins (up to 51% 
identity with 96% coverage) of leishbunyaviruses. The Conserved Domain search identified a 
bunyaviral RDRP domain (pfam04196) between aa 588 and 1306 in the L segment ORF with an E-
value = 2.24e-22. The region between the aa 86 and 151 of the same ORF displayed organization typical 
for the endonuclease domain of leishbunyaviruses (Figure 2). 
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Figure 2. Structural features of LmarLBV1. (A) Secondary structures and complementary sequences 
on 5′ and 3′ ends of the LmarLBV1 L, M, and S RNA segments predicted by IPknot. (and) depicting 
complementary nucleotides forming the stem, *-non-complementary nucleotides forming a bulge. (B) 
Amino acid alignment of the N-terminal endonuclease domain of RDRP of Leishbunyaviridae and 
Phenuiviridae. Functionally important residues are marked with arrowheads. Numbering of positions 
in alignment are indicated as in LmarLBV1 polymerase protein. Shading: ≥80% identity within Phenui 
and Leishbunyaviruses + Wuhan Spider virus (LBV+WSV). 

Consistent with the previously published data on LBVs [38], the search for the homologs 
encoded in the viral M segment did not return any hits with BLASTp, Conserved Domain search, 
PHYRE2, and HHpred software. The analysis of the M segment-encoded glycoprotein with 
TMHMM, TMPred, and Phobius did not identify any transmembrane domains (TMDs) in the viruses 
under study. However, like in other LBVs and consistent with the glycoprotein annotation, SignalP 
detected the N-terminal membrane insertion peptide (with cleavage site between aa 21 and 22) and 
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NetNGlyc predicted two N-glycosylation sites (at amino acid positions 34 and 237) in M segment 
sequences. Previously, similar results were obtained for LepmorLBV1, whereas in CabsLBV1, 
CotoLBV1, and the LBVs of Blechomonas spp., two TMDs were predicted in this segment [32,38]. We 
posit that such discrepancy could be explained by extreme sequence divergence preventing 
unambiguous identification of these elements. Application of a more sensitive algorithm, MEMSAT3, 
predicted one TMD in the virus investigated here, LepmorLBV1, as well as in Duke bunyavirus, which 
was not analyzed before. Similar to typical bunyaviruses, other LBVs have three TMDs in their 
glycoprotein ORFs. Analyses presented above suggest that the virus under investigation, as other 
bunyaviruses, can utilize host machinery for glycoprotein synthesis and virion assembly [65,66]. 
Indeed, the negatively stained transmission electron microscopy on purified virions from L. (M.) 
martiniquensis demonstrate the typical envelope with evenly spaced surface projections (Figure 1B). 

In summary, we demonstrate that the new virus possesses many characteristic features of 
leishbunyaviruses and, therefore, we named it Leishmania martiniquensis leishbunyavirus 1 
(LmarLBV1). 

3.2. Phylogeny 

The amino acid sequence of the RDRP was used in the phylogenetic inference of L. martiniquensis 
leishbunyavirus, using sequences of related Phenuiviridae as an outgroup (Figure 3). LmarLBV1 was 
nested within the clade Leishbunyaviridae with its closest relative being the Duke bunyavirus [67], 
which presumably infects a trypanosomatid from bees [38]. These two species proved to be sister to 
a big cluster of viruses from various monoxenous trypanosomatids. Judging by its phylogenetic 
position, we propose that L. martiniquensis acquired leishbunyavirus from a monoxenous 
trypanosomatid. 

 
Figure 3. RDRP-based maximum likelihood reconstruction of leishbunyaviruses' phylogeny. Double-
crossed branch is at 50% of its original lengths. Branch supports are Bayesian posterior probability 
and maximum likelihood bootstrap, respectively. Black circles indicate maximal (1/100) statistical 
supports. The scale bar indicates the number of substitutions per site. The tree was rooted with the 
sequences of Phenuiviridae. Lesihmania martiniquensis leishbunyavirus 1 (LmarLBV1) described here is 
highlighted in black. Abbreviations and GenBank accession numbers are in Table S2 [32]. 

Although the glycoprotein sequences of LBVs are quite divergent, we perceived that the C-
terminal part in some of them displayed conserved residues (Figure S1). Of note, all these viruses 
were those with one predicted TMD. Moreover, the sequence of this region in LmarLBV1 is more 
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similar to that in LepmorLBV1s, than in DuBV, its closest relative according to the RDRP tree (Figure 
3). Indels, rather than amino acid substitutions, distinguished these glycoprotein sequence fragments. 
LmarLBV1 had 28 and 77 indels compared to LepmorLBV1s and DuBV, respectively. The analysis of 
p-distances in trimmed alignments of the full glycoprotein sequences of all available species also 
showed markedly higher similarity between LmarLBV1 and LepmorLBV1s than between LmarLBV1 
and DuBV (Table S3). Of interest, although nucleoprotein sequences were too short for reliable 
phylogenetic analysis, they grouped LmarLBV1 with DuBV, similarly to the RDRP-based tree (Figure 
S2). 

3.3. LmarLBV1 Has Minor Effect on Leishmania Infectivity in Vitro 

To assess the role of LmarLBV1 in Leishmania biology, we first established an isogenic line of L. 
(M.) martiniquensis MHOM/MQ/92/MAR1 depleted of leishbunyavirus using ribavirin (Figure 4A). 
After four weeks of treatment, the viral load (as judged by RT-qPCR) was significantly diminished in 
the treated, compared to the untreated cells. Importantly, it stayed low even after the treatment was 
stopped (Figure 4A, asterisk), indicating that depletion was not transient. 

Wild type and LmarLBV1-depleted L. (M.) martiniquensis were used to infect non-stimulated, 
classically (LPS/IFN-γ), or alternatively (IL4) stimulated primary murine macrophages to assess early 
stages of infection. As expected, the infection level in the classically stimulated macrophages was 
significantly lower compared to either non-stimulated or IL-4-treated cells. Importantly, parasites, 
which were depleted of virus, were less infective, compared to their wild type kin (Figure 4B). The 
effect of viral presence is minor, yet it is statistically significant and may point out the potential role 
of LmarLBV1 in L. (M.) martiniquensis biology. 

 

Figure 4. LmarLBV1 facilitates Leishmania infection in vitro. (A) Establishment of isogenic, virus-
depleted line of L. (M.) martiniquensis MHOM/MQ/92/MAR1. The treatment with ribavirin was 
stopped after four weeks (asterisk), but the viral load remained low in LmarLBV1-depleted parasites. 
(B) Macrophage infection in vitro. The average number of parasite per well was calculated for the 
wild type and in LmarLBV1-depleted L. (M.) martiniquensis infecting non-stimulated, classically 
(LPS/IFN-γ) or alternatively (IL-4) stimulated primary murine macrophages. Data are summarized 
from two independent biological replicates (three technical replicates each). The error bars indicate 
standard deviations. N.S. = not statistically significant. p ≤ 0.05. 
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4. Discussion 

In this study, we describe the first leishbunyavirus of Leishmania. Previously, these viruses were 
discovered in monoxenous trypanosomatids of the subfamily Leishmaniinae (mainly in Crithidia 
spp.), genus Blechomonas (subfamily Blechomonadinae), as well as in one plant-infecting dixenous 
Phytomonas sp. (Figure 5) [32,38,39]. Leishbunyaviral sequences are also found in metatranscriptomes 
of insects infected by flagellates of other trypanosomatid genera, such as Strigomonas, Herpetomonas, 
and Trypanosoma (Figure 5, light grey) [38]. This is the most widespread and species-rich group of 
RNA viruses in trypanosomatids known to date. This fact, along with the discordance of viral and 
trypanosomatid phylogenies documented in the previous studies [32,38], strongly suggests that host-
to-host transition is significantly facilitated in this group of viruses. It is explained when taking into 
account two facts: (i) LBVs are able to form membrane-bound viral particles [68] and (ii) the flagellar 
pocket of trypanosomatids is an organelle-governing intensive exchange with the milieu by endo- 
and exocytosis [69–72]. The documented particles of LBVs measure about 100 nm [38] corresponding 
to the typical size of clathrin-coated endocytic vesicles in trypanosomatids [73]. Interestingly, 
clathrin-mediated endocytosis is the general route for an uptake of bunyaviruses [74]. Bunyaviruses 
evolved to utilize the eukaryotic endomembrane system for virus assembly and spreading. 
Apparently, LBVs use the same strategy in trypanosomatids. 

 
Figure 5. A schematic phylogenetic tree of the family Trypanosomatidae (modified from [13]), 
demonstrating the distribution of leishbunyaviruses (triangles) and leishmaniaviruses (circles) over 
the genera of these flagellates. Viruses identified in metatranscriptomes of trypanosomatid-infected 
insects [38] are shown in grey. 

Infectivity and formation of viral particles in bunyaviruses depend on glycoproteins, type I 
transmembrane proteins that are proteolytically processed and glycosylated in the ER [3,8]. Their C-
terminal cytoplasmic domains are thought to bind viral ribonucleoproteins and play a crucial role in 
genome packaging [75–77], whereas the N-terminal ectodomains are involved in receptor recognition 
and membrane fusion [65,78,79]. In leishbunyaviruses, the M segments and putative glycoproteins 
encoded within them are significantly reduced in size, extremely divergent, and sometimes contain 
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a reduced number of transmembrane domains. We hypothesize that such a layout reflects a reduced 
functionality of these proteins and potential broad specificity of viral infection, which explains their 
facilitated host-to-host transition. It was demonstrated that extended deletions in the bunyaviral 
glycoprotein N-terminus (ectodomain) do not prevent cell fusion and transport to the Golgi, but lead 
to attenuation of viruses [80]. This illustrates the propensity of these proteins to undergo reduction. 
The opportunity to be inherited vertically probably removes the need for efficient proliferation and 
infection and may even make such properties undesirable. 

Transfer of viruses between different species of trypanosomatids is possible because of 
coinfections, which are quite common in these parasites [81–85]. Coinfections were previously 
reported for Leptomonas moramango [39]. Here we did not observe viral coinfection but revealed a 
putative consequence of such an event—re-assortment of genomic segments. This assumption arises 
from discordance of phylogenies of proteins from the L and S segments on one hand, and the M 
segment on the other. The RDRP and nucleocapsid of LmarLBV1 are closely related to their 
counterparts in DukeBV, whereas its glycoprotein is more similar to the corresponding proteins of 
LepmorLBV1a and LepmorLBV1b. 

LmarLBV1 is the first non-LRV virus discovered in Leishmania. It was found in one of the 
members of the most enigmatic subgenus of these flagellates—Mundinia. Although the first species 
was characterized over 70 years ago, the subgenus itself was established only recently [21]. For the 
moment, this taxon contains four described species: L. (M.) enriettii, L. (M.) macropodum, L. (M.) 
martiniquensis, and L. (M.) orientalis [86–91]. The first two infect guinea pigs and kangaroos, 
respectively, while the remaining two are isolated from humans. In contrast to other human-infecting 
Leishmania, which use sand flies as their vectors, these flagellates may be transmitted by biting midges 
[92,93]. Host switching may have shaped the genome evolution in these flagellates [94]. While the 
parasitofauna of biting midges is understudied, several species of monoxenous trypanosomatids are 
documented in these insects [95–97]. This is in agreement with our proposal that LmarLBV1 originates 
from LBVs of monoxenous trypanosomatids. 

Leishmania martiniquensis is frequently found in skin lesions of immunocompromised patients 
indicating that it may be an opportunistic pathogen [98–101]. However, recent analysis of multiple 
records in Thailand and Myanmar reveals that neither the presence nor the severity of the infection 
is necessarily associated with HIV [87]. Notably, the clinical manifestations range from asymptomatic 
infection and various types of lesions to visceral disease. Previously, it was demonstrated that LRV1 
boosts virulence of Leishmania guyanensis in humans [33,34,102,103]. The discovery of a virus in L. 
martiniquensis poses an important question on whether it also influences the pathogenicity of this 
parasite. We demonstrate that the presence of LmarLBV1 is slightly beneficial for Leishmania. The 
molecular mechanism of such facilitation may be non-specific, since it was recently shown that 
simultaneous inoculation of virus-negative L. guyanensis and Toscana virus (Bunyavirales, 
Phenuiviridae) increases footpad swelling and parasite burden in mice, reminiscent of the reaction to 
the LRV1-positive L. guyanensis [35]. Although it was not shown experimentally, the presence of the 
membrane-bound viral particles in LBVs suggest that they can be shed by trypanosomatid cells. This 
way, LmarLBV1 can interact with the immune system of a vertebrate host, increasing the severity of 
leishmanial infection. Our results signify the need for a systematic exploration of trypanosomatid 
viromes. 

Supplementary Materials: The following are available online at www.mdpi.com/1999-4915/12/2/168/s1, Figure 
S1: Alignment of C-terminal part of the putative glycoproteins, possessing only one predicted transmembrane 
domain. Columns with ≥3 functionally similar amino acids are shaded, those with four functionally similar 
amino acids are marked with asterisk. Figure S2: Maximum likelihood phylogenetic tree of leishbunyaviral 
nucleoproteins. Numbers at branches indicate bootstrap support, values below 50 are not shown. The tree is 
rooted in agreement with RDRP-based reconstruction. Table S1: Summary statistics for RNA-seq data. Table S2: 
RDRP sequences of Bunyavirales with working abbreviations of viral names used in phylogenetic inferences. 
Table S3: Pairwise p-distances between glycoprotein sequences in Leishbunyaviridae. 
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